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AR MODELS

The most common time series model is called the autoregressive (AR)
model.

When only one lag matters, the zero-mean AR(1) model is

With a non-zero mean, we have

When the mean is non-zero, we can choose to de-mean (mean-center)
the series and model that instead.

In both cases, for the AR(1) we basically have a linear regression where
the value of the outcome at time  depends on value of outcome at time 

.

 is the autocorrelation.

yt = ϕyt−1 + ϵt;   ϵt ∼ N(0, σ2).

yt = μ + ϕyt−1 + ϵt;   ϵt ∼ N(0, σ2).

t
t − 1

ϕ
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AR MODELS

For the zero-mean AR(1) model,

 represents stationary time series.

 is a random walk.

 implies non-stationary, "explosive" models.

A stationary AR(1) series varies around its mean, randomly wandering off
away from the mean in response to the "input" values of the random 
series, but always returning to near the mean, and never "exploding"
away for more than a short time.

AR(1) series with  represent short-term, positive correlations
that would damp out exponentially if  were zero.

Negative values of  represent short-term, negative correlations.

|ϕ| < 1

ϕ = 1

|ϕ| > 1

ϵt

0 < ϕ < 1
ϵt

ϕ
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AR MODELS

Let's explore what AR(1) models look like via simulations.

Move to the R script here.

Note that

autocorrelations decay steadily with lags.

partial autocorrelations go to zero after lag p.
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https://ids-702-f20.github.io/Course-Website/slides/TS_simulations.R


AR MODELS

For a zero mean AR(p) model, we have

So that for a non-zero mean AR(p) model, we have

AR(p) models are capable of adequately representing a wide range of
observed behaviors in time series for large enough .

yt =
p

∑
k=1

ϕkyt−k + ϵt;   ϵt ∼ N(0, σ2).

yt = μ +
p

∑
k=1

ϕkyt−k + ϵt;   ϵt ∼ N(0, σ2).

p
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AR MODELS: HOW MANY LAGS?
Several ways to decide how many lags to include.

Use graphical techniques

Look at partial autocorrelation plots.

Set  at lag where correlations become small enough not to be
important.

Use a model selection criterion like BIC.

See section 8.6 of the assigned readings.

Sometimes in time series data, the partial autocorrelations are small
even at lag 1.

In this case, it can be reasonable to skip autoregressive models and just
use usual linear regression modeling approaches.

p
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WHAT IF THE SERIES IS NOT STATIONARY?
Sometimes transformations can make stationarity a reasonable
assumption.

Differencing (subtract lagged values from outcome at time ) also often
help; changes over time are more likely to be stationary than the raw
values.

Including predictors can also help as we will see later with the melanoma
example.

There are other models for non stationary time series.

t
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AR(P): INCLUDING PREDICTORS

We also might want to account for serial correlation in regression
modeling.

Linear regression assumes independent errors across individuals.

As we have already seen with the melanoma example, this may not be
reasonable with time series data.

With a single predictor , we have

That is, the value of outcome at time  depends on value of outcome at
time , but also on the predictor  at time .

Easy to extend the model to multiple predictors.

xt

yt = μ +

p

∑
k=1

ϕkyt−k + xt + ϵt;   ϵt ∼ N(0, σ2).

t
t − 1, t − 2, … , t − k x t
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MODEL ASSUMPTIONS: STATIONARITY

Coefficients and regression variance do not change with time.

Apart from changes in explanatory variables, the behavior of the
time series is the same at different segments of time.

Generally, no predictable patterns in the long term

Diagnostics: check if patterns in residuals are similar across time.

Tests:

Ljung-Box

Augmented Dickey–Fuller (ADF)

Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

Remedies:

Sometimes transformations (e.g., using logs) can make stationarity
more reasonable.

Use time series models that allow for drifts.
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MODEL ASSUMPTIONS: OTHERS

Other assumptions

1. Linearity

2. Independence of errors

3. Equal variance

4. Normality

Diagnose using the same methods we used for linear regression.

Remedies include transformations and model changes as we had before.
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MA MODELS

The zero-mean MA(1) model is

With a non-zero mean, we have

The value of the outcome at time  depends on the value of the deviation
from the mean (the error term) at time .

For a zero mean MA(p) model, we have

So that for a non-zero mean MA(p) model, we have

yt = ϕϵt−1 + ϵt;   ϵt ∼ N(0, σ2).

yt = μ + ϕϵt−1 + ϵt;   ϵt ∼ N(0, σ2).

t
t − 1

yt =

p

∑
k=1

ϕkϵt−k + ϵt;   ϵt ∼ N(0, σ2).

yt = μ +

p

∑
k=1

ϕkϵt−k + ϵt;   ϵt ∼ N(0, σ2).
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MA MODELS

Let's explore what MA(1) models looks like via simulations. Move back to
the same R script.

Note that

Autocorrelations die off almost immediately after lag 1.

In MA(p) model, autocorrelations (mostly!) die off after lag . May
not be exact since autocorrelation measures correlation between the
actual outcome at different time points.

Partial autocorrelations are not particularly useful.

It is possible to write any stationary AR(p) model as an  model.
The reverse result holds for some constraints on the MA parameters. See
the reading material.

p

MA(∞)
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DECIDING MODELS?
Use autocorrelations and partial autocorrelations to help decide model.

Steady decay on autocorrelations often implies AR.

Non zero autocorrelations before lag  and zero after lag  often implies
MA.

Sometimes use both AR and MA error structure, called an ARMA model.

Whenever we take differences in  values to ensure stationarity before
fitting ARMA models, we have ARIMA models.

p p

y
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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