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Introduction

When data are ordered in time, responses and errors from one period
may influence responses and errors from another period.

For example, it is reasonable to expect unemployment rate in a month to
be correlated with unemployment rate in previous month(s).

Another example: weather events in current time period may depend on
weather events in previous time period.

These are called time series data.

Correlation due to time is called serial correlation or autocorrelation.

We will only scratch the surface in this course.
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Goals of time series analysis

Forecasting outcomes

Given a series of outcomes ordered in time, predict the values of the
outcomes in the future.

Examples:

forecasting future price of oil given historical oil prices.

predicting future price of a particular stock price given past
prices of the same stock.

When forecasting, it is important to also report an interval estimate to
incorporate uncertainty about future values.
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Goals of time series analysis

Forecasting outcomes

Forecasting outcomes using predictors may involve building a model
for the predictors as well, since we can't observe them in the future.

For example, predicting inflation rate given employment rate
requires estimating future values for the employment rate as well.

Learning relationships with data ordered in time.

How are outcomes correlated over time? Are there periodic
relationships in outcomes?

Regressions of outcomes on predictors, accounting for correlated
errors due to time series.
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Motivating example: FTSE 100
The FTSE (Financial Times Stock Exchange) 100 Index is a share index of
the 100 companies listed on the London Stock Exchange with the highest
market capitalization.

A share index is essentially a form of weighted average of prices of
selected stocks.

To motivate our discussions on time series, let's look at data for FTSE 100
returns in 2018.

ftse100 <- read.csv("data/ftse2018.csv", header = T)
head(ftse100)

##         Date    Open    High     Low   Close
## 1  11/7/2018 7040.68 7136.75 7040.68 7117.28
## 2  11/6/2018 7103.84 7117.50 7027.45 7040.68
## 3  11/5/2018 7094.12 7140.37 7077.40 7103.84
## 4  11/2/2018 7114.66 7196.39 7094.12 7094.12
## 5  11/1/2018 7128.10 7165.61 7085.74 7114.66
## 6 10/31/2018 7035.85 7161.54 7035.85 7128.10

Can we forecast closing prices for the next five days from 11/7/2018?
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Motivating example: FTSE 100
Notice that the data go from latest to earliest date, so let's invert the order
of the rows to make the time series increasing in date.

ftse100 <- ftse100[nrow(ftse100):1,]
dim(ftse100)

## [1] 211   5

head(ftse100)

##          Date    Open    High     Low   Close
## 211 1/10/2018 7731.02 7756.11 7716.21 7748.51
## 210 1/11/2018 7748.51 7768.96 7734.64 7762.94
## 209 1/12/2018 7762.94 7792.56 7752.63 7778.64
## 208 1/15/2018 7778.64 7783.61 7763.43 7769.14
## 207 1/16/2018 7769.14 7791.83 7740.55 7755.93
## 206 1/17/2018 7755.93 7755.93 7711.11 7725.43
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Motivating example: FTSE 100
Plot the closing prices to see what a simple time series data looks like.

tsClose <- ts(ftse100$Close); ts.plot(tsClose,col="red3")

It is reasonable to expect closing prices for a particular day to be
correlated with closing prices for previous days.

How many of the previous days? We will have to investigate!

7 / 14



Motivating example: Sunspots and

melanoma

We will revisit that data but let's look at different example, where we
also have a predictor.

Incidence of melanoma (skin cancer) may be related to solar radiation.

Annual data from Connecticut tumor registry on age adjusted melanoma
incidence rates (per 100000 people).

Treat these rates as without error.

We also have annual data on relative sunspot (dark spots on the sun
caused by intense magnetic activity) activity.

Data go from 1936 to 1972.
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Motivating example: Sunspots and

melanoma

cancersun <- read.csv("data/melanoma.csv", header = T)
names(cancersun) = c("year", "melanoma", "sunspot")
str(cancersun)

## 'data.frame':    37 obs. of  3 variables:
##  $ year    : int  1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 ...
##  $ melanoma: num  1 0.9 0.8 1.4 1.2 1 1.5 1.9 1.5 1.5 ...
##  $ sunspot : num  40 115 100 80 60 40 23 10 10 25 ...

head(cancersun)

##   year melanoma sunspot
## 1 1936      1.0      40
## 2 1937      0.9     115
## 3 1938      0.8     100
## 4 1939      1.4      80
## 5 1940      1.2      60
## 6 1941      1.0      40
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Motivating example: Sunspots and

melanoma

ggplot(cancersun, aes(x=sunspot, y=melanoma)) +
  geom_point(alpha = .5,colour="blue4") +
  geom_smooth(method="lm",col="red3") +
  labs(title="Melanoma Incidence Rate vs Sunspots") +
  theme_classic()

Weak positive (maybe!) relationship between them.
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Motivating example: Sunspots and

melanoma

Let's look at melanoma incidence rate in time

tsMelanoma <- ts(cancersun$melanoma); ts.plot(tsMelanoma,col="blue4")

Trend in time, some of which we might be able to explain using sunspots.
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Motivating example: Sunspots and

melanoma

Let's fit a linear model to the relationship between the two variables.

regmelanoma = lm(melanoma ~ sunspot, data = cancersun)
ggplot(cancersun, aes(x=sunspot, y=regmelanoma$residual)) +
  geom_point(alpha = .5,colour="blue4") +
  geom_smooth(method="lm",col="red3") + labs(title="Residuals vs Sunspots") +
  theme_classic()

Residuals look fine here. 12 / 14



Motivating example: Sunspots and

melanoma

Let's plot the residuals versus year.

ggplot(cancersun, aes(x=year, y=regmelanoma$residual)) +
  geom_point(alpha = .5,colour="blue4") +
  geom_smooth(method="lm",col="red3") + labs(title="Residuals vs Year") +
  theme_classic()

Huge trend! What to do???
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What's next?
Move on to the readings for the next module!
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