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Causal inference using propensity scores

Propensity score analysis (in observational studies) typically involves two
stages:

Stage 1. Estimate the propensity score: by a logistic regression model or
machine learning methods.

Stage 2. Given the estimated propensity score, estimate the causal
effects through one of these methods:

Stratification

Matching

Regression

Weighting (which we will not cover)

Mixed combinations of the above

The general idea is to use the estimated propensity scores to correct for lack
of balance between groups, then go on to estimate the causal effect using
the "balanced" data.
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Stage 1: estimating the propensity

score
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Stage 1: estimating the propensity score

The main purpose of estimating propensity score is to ensure overlap and
balance of covariates between treatment groups, instead of “finding a
perfect fit" of propensity score.

As long as the important covariates are balanced, model overfitting is not
a concern; underfitting can be a problem however.

Essentially any balancing score (not necessarily propensity score) would
be good enough for practical use.
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Stage 1: estimating the propensity score

A standard procedure for estimating propensity scores includes:

1. initial fit;

2. discarding outliers (with too large or too small propensity scores);

3. check covariate balance; and

4. re-fit if necessary.
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Stage 1: estimating the propensity score

Step 1. Estimate propensity score using a logistic regression:

Include all covariates in this initial model or do a stepwise selection on
the covariates and interactions to get an initial estimate of the
propensity scores. That is,

Can also use machine learning methods.

Wi|Xi ∼ Bernoulli(πi);     log( ) = Xiβ.
πi

1 − πi

ê
0(Xi) = .

eXiβ̂

1 + eXiβ̂
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Stage 1: estimating the propensity score

Step 2. Check overlap of propensity score between treatment groups. If
necessary, discard the observations with non-overlapping propensity
scores.

Step 3. Assess balance given by initial model in Step 1.

Step 4. If one or more covariates are seriously unbalanced, include some
of their higher order terms and/or interactions to re-fit the propensity
score model and repeat Steps 1-3, until most covariates are balanced.

Note: There are situations where some important covariates will still not
be completely balanced after repeated trials. Then they should be taken
into account in Stage 2 (outcome stage) of propensity score analysis.
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Stage 1: estimating the propensity score

In practice, balance checking in the PS estimation stage can be done via
sub-classification/stratification, matching or weighting.

sub-classification/stratification: check the balance of all important
covariates within  blocks of  based on its quantiles.

matching: check the balance of all important covariates in the
matched sample.

in weighting, check the balance of the weighted covariates between
treatment and control groups.

The workflow is the same: fit initial model, check balance (sub-
classification, matching or weighting), then refit.

K ê
0(Xi)
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Propensity score analysis workflow
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Stage 2: estimating the causal

effect
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Stage 2: stratification

Given the estimated propensity score, we can estimate the causal
estimands through sub-classification/stratification, weighting or
matching.

Let's start with stratification.

Recall that the result of 5 strata of a single covariate removes 90% bias.

Stratification using propensity score as the summary score should have
approximately the same effects.
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Stage 2: stratification

Divide the subjects in to  strata by the corresponding quantiles of the
estimated propensity scores.

ATE: estimate ATE within each stratum and then average by the block
size. That is,

with  and  being the numbers of units in class  under treated
and control, respectively.

ATT: weight within-block ATE by proportion of treated units .

A variance estimator for  is

or use bootstrap.

K

τ̂
ATE =

K

∑
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Propensity score stratification: Remarks

5 blocks is usually not enough, consider higher number such as 10.

Stratification is a coarsened version of matching.

Empirical results from real applications and situations: usually not as
good as matching or weighting.

Good for cases with extreme outliers (smoothing): less sensitive, but also
less efficient.

Can be combined with regression: first estimate causal effects using
regression within each block and then average the within-subclass
estimates.
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Stage 2: matching

In propensity score matching, potential matches are compared using
(estimated) propensity score.

1-to-n closest neighbor matching is common when the control group is
large compared to treatment group.

In most software packages, the default is actually 1-to-1 closest neighbor
matching.

Pros: robust, matched pairs (so you can do within pair analysis).

Sometimes, dimension reduction via the propensity score may be too
drastic, recent methods advocate matching on the multivariate
covariates directly.

Nonetheless, this is what we will focus on for our minimum wage data.
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Stage 2: regression

Remember the key propensity score property:

Idea: in a regression estimator, adjusting for  instead of the whole 
; thus in regression models of  use
  as the single predictor.

Clearly, modeling  is simpler than modeling 
; effectively more data to estimate essential parameters

due to the dimension reduction.

However,

we lose interpretation of the effects of individual covariates, e.g.
age, sex; and

reduction to the one-dimensional propensity score may be too
drastic.

Yi(0), Yi(1) ⊥ Wi|Xi   ⇒   Yi(0), Yi(1) ⊥ Wi|e(Xi)

e(X)
X Y (w) e(X)

Pr(Y (w)|ê(X))
Pr(Y (w)|X)
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Stage 2: regression

Idea: instead of using the estimated  as the single predictor, use it
as an additional predictor in the model. That is, .

Turns out that  gives both efficiency and robustness.

Also, if we are unable to achieve full balance on some of the predictors,
using  will help further control for those unbalance
predictors.

Empirical evidences (e.g. simulations) support this claim.

ê(X)
Pr(Y (w)|X, ê(X))

Pr(Y (w)|X, ê(X))

Pr(Y (w)|X, ê(X))
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What's next?
Move on to the readings for the next module!
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