# IDS 702: MODULE 6.5

#### STRATIFICATION AND MATCHING

DR. OLANREWAJU MICHAEL AKANDE



# BALANCING COVARIATES: SMALL NUMBER OF COVARIATES

- When the number of covariates is small, the adjustment needed to get some balance can be achieved by matching or stratification.
- Exact matching: for each treated subject, get one control with the exact same value of the covariates (easier for categorical covariates).
- Exact matching ensures distributions of covariates in treatment and control groups are exactly the same, thus eliminating bias due to difference in X.
- After matching, compute treatment effect by using the matched data.
- However, exact matching is usually unfeasible, even with low dimensional covariates.



#### MATCHING

- Matching estimators impute the missing potential outcomes, using only the outcomes of nearest neighbors of the opposite treatment group.
- They have often (but not exclusively) been applied in settings where
  - the interest is in the ATT; and
  - there is a large reservoir of potential controls. This allows matching each treated unit to one or more distinct controls (nearest neighbors).
- More general settings: both treated and control units are (potentially) matched and matching is done with replacement.

#### MATCHING (FIXED NUMBER OF MATCHES)

• Let  $\mathcal{M}_i$  be the set of the indices of M closest matches of unit i using a distance metric that depends on X.

Let

$$\hat{Y_i}(0) = \sum_{i \in \mathcal{M}_i} rac{Y_j}{M} ext{ if } W_i = 1 ext{ and } \hat{Y_i}(0) = Y_i^{ ext{obs}} ext{ if } W_i = 0; \ \hat{Y_i}(1) = Y_i^{ ext{obs}} ext{ if } W_i = 1 ext{ and } \hat{Y_i}(1) = \sum_{i \in \mathcal{M}_i} rac{Y_j}{M} ext{ if } W_i = 0.$$

- Then, the treatment effect within a pair is estimated as the difference in outcomes, and we can average these within-pair differences.
- That is,

$$\hat{ au}^{ ext{ATE}} = \sum_i rac{\hat{Y}_i(1) - \hat{Y}_i(0)}{N}; 
onumber \ \hat{ au}^{ ext{ATT}} = \sum_i rac{\left(Y_i - \hat{Y}_i(0)
ight)W_i}{N_i}.$$



# MATCHING (FIXED NUMBER OF MATCHES)

- Pros: Matching estimators that ensure good balance in covariates between groups are generally robust.
- Cons: With fixed number of matches and matching with replacement, matching estimators can be biased.
- Matching estimators are generally not efficient.
- In fact, estimators combining matching and regression adjustment are usually more efficient.
- There can be residual imbalance in matching.
- Perform bias correction via regression on the matched sample.



# MATCHING: TUNING

- Matching involves lots of tuning
  - distance metric
  - fixed or varying number of matches
  - for fixed M, number of matches
  - with or without replacement
- Tuning for matching is an art, with some theory and general guidelines available...

# MATCHING: TUNING

- Distance metric: Mahalanobis distance, propensity score, tree-based.
- Fixed M or varying M? For varying M:
  - Matching with caliper: define a caliper (say 0.1) and all units within that caliper are matches
  - M increases with sample size.
- For fixed M, the choice of M (number of matches per unit) has a biasvariance trade-off:
  - smaller  $M \Rightarrow$  smaller bias but larger variance
  - larger  $M \Rightarrow$ , larger bias but smaller variance.
- Also depends on the proportion of treatment versus control: when there is a much larger control group, we can use one-to-many matching.



# MATCHING: TUNING

- Matching with replacement:
  - Pros:
    - 1. computationally easier
    - 2. both controls and treated can be matched, but with high variances
    - 3. not order-dependent
  - Cons: some units (especially ones with extreme propensity scores) can be matched many times and thus heavily influence overall estimates.
- What about matching ties? What should we do about them?
- Matching is a vast topic and there are so many matching methods.
- Implementation in R: Matchit, Matching, and many more.



## **S**TRATIFICATION

- Another option is stratification.
- Suppose we have a single covariate X with k levels (e.g. race).
- We will continue to assume unconfoundedness and overlap holds.
- Suppose we want to estimate ATE.
- Let
  - $n_k$  be the number of observations with  $X_i = k$ ; and
  - $\overline{Y}_{k,w}$  be the sample average of all  $Y_i$  values among observations in cell  $X_i = k$  and  $W_i = w$ .
- Once again, recall that ATE is  $au = \mathbb{E}[Y_i(1) Y_i(0)].$



## STRATIFICATION

Then we have

$$\mathbb{E}[Y_i(1)] = \sum_k \mathbb{E}[Y_i|X_i=k, W_i=1] \cdot \mathbb{P}\mathrm{r}[X_i=k],$$

and

$$\mathbb{E}[Y_i(0)] = \sum_k \mathbb{E}[Y_i|X_i=k, W_i=0] \cdot \mathbb{P}\mathbf{r}[X_i=k].$$

- We can estimate  $\mathbb{E}[Y_i(1)]$  using a consistent estimator  $\sum_k \bar{Y}_{k,1} \frac{n_k}{N}$ . We can use a similar estimand for  $\mathbb{E}[Y_i(0)]$ .
- Therefore, the ATE  $\tau$  can be estimated by

$$\hat{ au} = \sum_k \left(ar{Y}_{k,1} - ar{Y}_{k,0}
ight) rac{n_k}{N}.$$



## **S**TRATIFICATION

- What if *X* is continuous?
- Stratification (subclassification): split X into k classes.
- Then, for class k, define  $n_k$  and  $\bar{Y}_{k,w}$  as before.
- An estimator of au is then once again

$$\hat{ au}^k = \sum_k ig(ar{Y}_{k,1} - ar{Y}_{k,0}ig) \, rac{n_k}{N}.$$

- $\hat{\tau}^k$  is generally biased for  $\tau$ , however, stratification of over 5 blocks can remove 90% of the bias!
- Overall, the key idea with stratification is this: even though we may not have balance across the entire sample, we likely can get balance by focusing on subgroups, one at a time.



# BALANCING COVARIATES: LARGE NUMBER OF COVARIATES

- What if we have a large number of covariates?
- With just 20 binary covariates, there are  $2^{20}$  or about a million covariate patterns!
- Direct matching (exact of nearest neighbors) or stratification is nearly impossible.
- Need dimensional reduction to a single score which we can then use to match or stratify.
- The most popular option is the propensity score:  $e(x) = \mathbb{P}\mathrm{r}[W_i = 1 | X_i = x].$
- We will focus on propensity score methods over the next few modules and use them to analyze the minimum wage data.



#### Acknowledgements

These slides contain materials adapted from courses taught by Dr. Fan Li.



# WHAT'S NEXT?

Move on to the readings for the next module!

