IDS 702: MODULE 4.5

MULTILEVEL/HIERARCHICAL LOGISTIC MODELS

DR. OLANREWAJU MICHAEL AKANDE

MULTILEVEL LINEAR MODELS

- The same idea and approach used to build multilevel models for normal data can be used to build multilevel logistic (and probit) models for binary outcomes.
- Recall that for a varying-intercepts linear model with one individual-level predictor, we have

$$egin{aligned} y_{ij} &= eta_0 + \gamma_{0j} + eta_1 x_{1ij} + \epsilon_{ij}; & i = 1, \dots, n_j; & j = 1, \dots, J; \ \epsilon_{ij} &\sim N(0, \sigma^2); \ \gamma_{0j} &\sim N(0, au_0^2) \end{aligned}$$

where x_{1ij} can be replaced with x_{1j} for a group-level predictor.

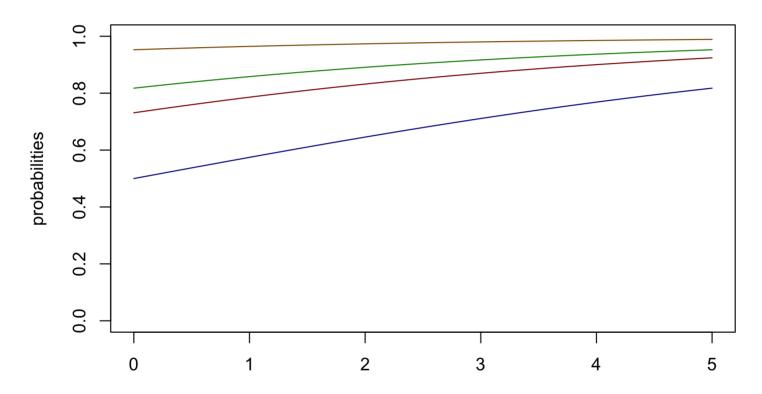
- This model is a compromise between complete pooling across groups of a grouping variable, such as counties in the radon example for last class (that is, same intercept for each county), and no pooling (estimating a separate intercept for each county without borrowing information).
- The degree of pooling is determined by the amount of information within and between groups.

MULTILEVEL LOGISTIC MODELS

- We can use the same idea to build a varying-intercepts logistic model.
- That is,

$$egin{aligned} y_{ij} | x_{ij} &\sim ext{Bernoulli}(\pi_{ij}); \quad i=1,\ldots,n_j; \quad j=1,\ldots,J; \ \log\left(rac{\pi_{ij}}{1-\pi_{ij}}
ight) &= eta_0 + \gamma_{0j} + eta_1 x_{1ij}; \ \gamma_{0j} &\sim N(0,\sigma_0^2) \end{aligned}$$

where once again, x_{1ij} is an individual-level predictor which can be replaced with x_{1j} for a group-level predictor.


• The Gelman and Hill book uses the following notation instead

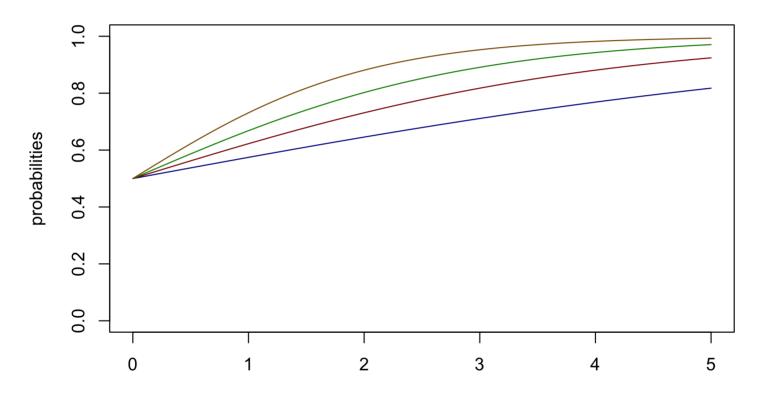
$$egin{aligned} y_i | x_i &\sim ext{Bernoulli}(\pi_i); \quad i=1,\ldots,n; \quad j=1,\ldots,J; \ &\log\left(rac{\pi_i}{1-\pi_i}
ight) = eta_0 + \gamma_{0j[i]} + eta_1 x_{i1}; \ &\gamma_{0j} &\sim N(0,\sigma_0^2). \end{aligned}$$

I will use this notation in this module and the next.

VARYING-INTERCEPTS LOGISTIC MODEL

Inverse logit functions for varying-intercepts logistic models.

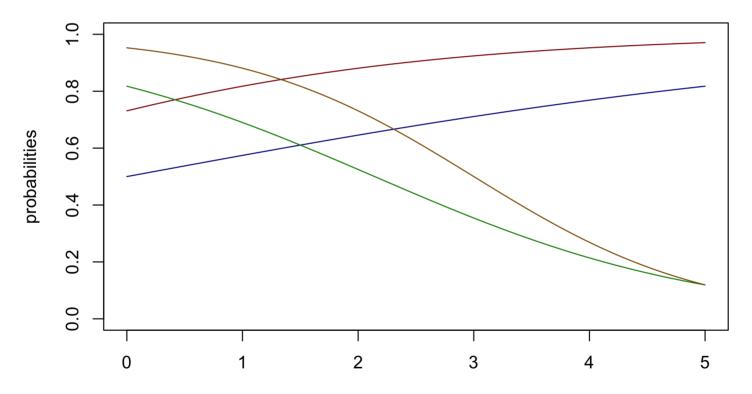
Х


MULTILEVEL LOGISTIC MODELS

- It is easy to extend this model to allow for varying-slopes or both varyingintercepts and varying-slopes just like we had for multilevel linear models.
- The interpretations of the fixed effect(s) in multilevel logistic models follow directly from what we had for the standard logistic models, that is, log-odds, odds and odds ratios.
- The only difference now is the hierarchy in our data which allows us to borrow information across groups.
- One way to think about this is that we expect odds and odd-ratios to be more similar for observations within the same group, but we allow for some similarity across groups via partial pooling.

VARYING-SLOPES LOGISTIC MODEL

Inverse logit functions for varying-slopes logistic models.



Х

VARYING-INTERCEPTS, VARYING-SLOPES LOGISTIC MODEL

Inverse logit functions for varying-intercepts, varying-slopes logistic models.

- To illustrate how to fit and interpret the results of multilevel logistic models, we will use a sample data on election polls.
- National opinion polls are conducted by a variety of organizations (e.g., media, polling organizations, campaigns) leading up to elections.
- While many of the best opinion polls are conducted at a national level, it can also be often interesting to estimate voting opinions and preferences at the state or even local level.
- Well-designed polls are generally based on national random samples with corrections for nonresponse based on a variety of demographic factors (e.g., sex, ethnicity, race, age, education).
- The data is from CBS News surveys conducted during the week before the 1988 election.
- Respondents were asked about their preferences for either the Republican candidate (Bush Sr.) or the Democratic candidate (Dukakis).

The dataset includes 2193 observations from one of eight surveys (the most recent CBS News survey right before the election) in the original full data.

Variable	Description							
org	bsnyt = CBS/NYT							
bush	1 = preference for Bush Sr., 0 = otherwise							
state	1-51: 50 states including DC (number 9)							
edu	education: 1=No HS, 2=HS, 3=Some College, 4=College Grad							
age	1=18-29, 2=30-44, 3=45-64, 4=65+							
female	1=female, 0=male							
black	1=black, 0=otherwise							
region	1=NE, 2=S, 3=N, 4=W, 5=DC							
v_prev	average Republican vote share in the three previous elections (adjusted for home- state and home-region effects in the previous elections)							

Given that the data has a natural multilevel structure (through state and region), it makes sense to explore multilevel models for this data.

We will do just that in the next module.

- Both voting turnout and preferences often depend on a complex combination of demographic factors.
- In our example dataset, we have demographic factors such as biological sex, race, age, education, which we may all want to look at by state, resulting in $2 \times 2 \times 4 \times 4 \times 51 = 3264$ potential categories of respondents.
- We may even want to control for region, adding to the number of categories.
- Clearly, without a very large survey (most political survey poll around 1000 people), we will need to make assumptions in order to even obtain estimates in each category.
- We usually cannot include all interactions; we should therefore select those to explore (through EDA and background knowledge).
- The data is in the file polls_subset.txt on Sakai.

Load the data
polls_subset <- read.table("data/polls_subset.txt",header=TRUE)
str(polls_subset)</pre>

head(polls_subset)

##	org	survey	bush	state	edu	age	female	black	region	v_prev
## 1 c	bsnyt	9158	NA	7	3	1	1	0	1	0.5666333
## 2 c	bsnyt	9158	1	39	4	2	1	0	1	0.5265667
## 3 c	bsnyt	9158	0	31	2	4	1	0	1	0.5641667
## 4 c	bsnyt	9158	0	7	3	1	1	0	1	0.5666333
## 5 c	bsnyt	9158	1	33	2	2	1	0	1	0.5243666
## 6 c	bsnyt	9158	1	33	4	4	1	0	1	0.5243666

summary(polls_subset)

##	org	survey	bush	state
##			Min. :0.0000	
##	Class :characte	r 1st Qu.:9158	1st Qu.:0.0000	1st Qu.:14.00
##	Mode :characte	r Median :9158	Median :1.0000	Median :26.00
##		Mean :9158	Mean :0.5578	Mean :26.11
##		3rd Qu.:9158	3rd Qu.:1.0000	3rd Qu.:39.00
##		Max. :9158	Max. :1.0000	Max. :51.00
##			NA's :178	
##	edu	age	female	black
##			Min. :0.0000	
##	1st Qu.:2.000	1st Qu.:2.000	1st Qu.:0.0000	1st Qu.:0.00000
##	Median :2.000	Median :2.000	Median :1.0000	Median :0.00000
##	Mean :2.653	Mean :2.289	Mean :0.5887	Mean :0.07615
##	3rd Qu.:4.000	3rd Qu.:3.000	3rd Qu.:1.0000	3rd Qu.:0.00000
##	Max. :4.000	Max. :4.000	Max. :1.0000	Max. :1.00000
##				
##	region	v_prev		
##	Min. :1.000	Min. :0.1530		
##	1st Qu.:2.000	1st Qu.:0.5278		
##	Median :2.000	Median :0.5481		
##	Mean :2.431	Mean :0.5550		
##	3rd Qu.:3.000	3rd Qu.:0.5830		
##	Max. :5.000	Max. :0.6927		
##				

[1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "FL" "GA" "HI" "ID" "IL" "IN" "IA"
[16] "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MN" "MS" "MO" "MT" "NE" "NV" "NH" "NJ"
[31] "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX" "UT" "VT"
[46] "VA" "WA" "WV" "WI" "WY"

#In the polls data, DC is the 9th "state" in alphabetical order state_abbr <- c (state.abb[1:8], "DC", state.abb[9:50]) polls_subset\$state_label <- factor(polls_subset\$state,levels=1:51,labels=state_abbr) rm(list = ls(pattern = "state")) #remove unnecessary values in the environment

View properties of the data
head(polls_subset)

##		org	survey	bush	state	edu	age	female	black	region	v_prev	region_label
##	1	cbsnyt	9158	NA	7	3	1	1	0	1	56.66333	NE
##	2	cbsnyt	9158	1	39	4	2	1	0	1	52.65667	NE
##	3	cbsnyt	9158	Θ	31	2	4	1	Θ	1	56.41667	NE
##	4	cbsnyt	9158	0	7	3	1	1	0	1	56.66333	NE
##	5	cbsnyt	9158	1	33	2	2	1	0	1	52.43666	NE
##	6	cbsnyt	9158	1	33	4	4	1	Θ	1	52.43666	NE
##	<pre>## edu_label age_label state_label</pre>											
##	1	Some Co	ollege	18	3-29		C	Т				
##	2	College	e Grad	30	9-44		F	PA				
##	3	3 HS 65+		65+		Ν	13					
##	4	Some Co	ollege	18	3-29		C	Т				
##	5		HS	30	9-44		Ν	IY				
##	6	College	e Grad		65+		Ν	IY				

dim(polls_subset)

[1] 2193 14

View properties of the data
str(polls_subset)

##	'data.frame': 2193	obs. of 14 variables:
##	\$ org : chr	"cbsnyt" "cbsnyt" "cbsnyt"
##	\$ survey : int	9158 9158 9158 9158 9158 9158 9158 9158
##	\$ bush : int	NA 1 0 0 1 1 1 1 0 0
##	\$ state : int	7 39 31 7 33 33 39 20 33 40
##	\$ edu : int	3 4 2 3 2 4 2 2 4 1
##	\$ age : int	1 2 4 1 2 4 2 4 3 3
##	\$ female : int	1 1 1 1 1 0 1 0 0
##	\$ black : int	$0 0 0 0 0 0 0 0 0 \dots$
##	\$ region : int	1 1 1 1 1 1 1 1 1
##	\$ v_prev : num	56.7 52.7 56.4 56.7 52.4
##	<pre>\$ region_label: Fact</pre>	or w/ 5 levels "NE","S","N","W",: 1 1 1 1 1 1 1 1 1
##	\$ edu_label : Fact	or w/ 4 levels "No HS","HS","Some College",: 3 4 2 3 2 4 2 2 4 1
##	<pre>\$ age_label : Fact</pre>	or w/ 4 levels "18-29","30-44",: 1 2 4 1 2 4 2 4 3 3
##	<pre>\$ state_label : Fact</pre>	or w/ 51 levels "AL","AK","AZ",: 7 39 31 7 33 33 39 20 33 40

WHAT'S NEXT?

Move on to the readings for the next module!

