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The radon analysis cont'd
Variable Description

radon radon levels for each house

log_radon log(radon)

state state

floor lowest living area of each house: 0 for basement, 1 for first
floor

countyname county names

countyID ID for the county names (1-85)

fips state + county fips code

uranium county-level soil uranium

log_uranium log(uranium)
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Including group-level predictors

We should also control for uranium since radon occurs naturally as an
indirect decay product of uranium.

However, since each county has one single value for uranium, each house
within that county has the exact same value.

Turns out that including group-level predictors is quite straightforward in
R, as long as the predictor is properly represented in the data as
repeated values for all observations in the same group.

One can ask the question: with 85 counties in the dataset, how are we
able to fit a regression with 85 different intercepts for each county as
well as a county-level coefficient for uranium?

The simple answer is that we are actually using all the observations
within each county (along with all observations from other counties in
fact), when estimating each random intercept, but yes we only use 85
distinct values to estimate the effect of uranium.
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The radon analysis: varying-intercepts

Word of caution: be careful when including random slopes. You should
really include them if you absolutely have to and if you have enough data
to estimate them accurately.

lme4 in R uses the frequentist approach which is not fully reliable here as
it uses an approximation for inference and it does not fully account for
uncertainty in the estimated variance parameters. Personally, I prefer to
use Bayesian models for multilevel regressions.

If you want to fit a multilevel model for your final project, I would
suggest taking a look at the brms package in R for a Bayesian approach.

Let's use AIC to see if we can exclude the random slopes.

Model1 <- lmer(log_radon ~ floor + (floor | countyname), data = Radon) 
Model2 <- lmer(log_radon ~ floor + (1 | countyname), data = Radon) 
AIC(Model2); AIC(Model1) #same overall conclusions using BIC

## [1] 2179.305

## [1] 2180.325

No real difference. We will exclude them going forward. You should be
able to interpret the updated coefficients of the new model.
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The radon analysis: including uranium

Turns out that it also often makes sense to use log_uranium instead of uranium.

Model3 <- lmer(log_radon ~ floor + log(uranium) + (1 | countyname), data = Radon) ; summary(Model3)

## Linear mixed model fit by REML ['lmerMod']
## Formula: log_radon ~ floor + log(uranium) + (1 | countyname)
##    Data: Radon
## 
## REML criterion at convergence: 2134.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9673 -0.6117  0.0274  0.6555  3.3848 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  countyname (Intercept) 0.02446  0.1564  
##  Residual               0.57523  0.7584  
## Number of obs: 919, groups:  countyname, 85
## 
## Fixed effects:
##                  Estimate Std. Error t value
## (Intercept)       1.46576    0.03794  38.633
## floorFirst Floor -0.66824    0.06880  -9.713
## log(uranium)      0.72027    0.09176   7.849
## 
## Correlation of Fixed Effects:
##             (Intr) flrFrF
## florFrstFlr -0.357       
## log(uranim)  0.145 -0.009

For any house in Minnesota with a basement as the lowest living area, every
unit increase in log(uranium) increases radon levels by a multiplicative effect
of .e0.72 = 2.05 5 / 10



How much data and how many groups?
When , that is the number of groups, is small, it is difficult to estimate
the across-group variation.

Multi-level modeling often adds little in such scenarios.

However, it should not do any worse than including the grouping variable
as a factor variable, and it can still be easier to interpret since we need
not drop any level as baseline.

Small sample sizes within the groups can be enough to fit a multilevel
model when only the intercept is varying.

With varying slopes, one can easily run into convergence issues.

When groups do not have that many data points, the random intercepts
and slopes may not be estimated accurately but the data within each
group will still provide information that allows estimation of fixed effects
and overall variance parameters.

J
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Extra nested levels

It is easy to envision applications where there might be more than one
level of hierarchy.

For example

students within schools within counties within states

patients within hospitals within states

voters within voting districts within states

In those applications, it is straightforward to extend these ideas and
create extra levels of hierarchy in the multi-level models.

When that is the case, I once again prefer to rely on Bayesian methods to
fit those models.
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Non-nested models

In other applications, there can be complicated grouping structures,
where observations fall into two or more different non-nested grouping
variables.

For example

patients within  hospitals receiving  different treatments

students within  schools taking classes based on  different
teaching techniques.

Once again, it is straightforward to incorporate these within the context
of multi-level models.

J K

J K
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Non-nested models

Suppose we want to fit a multi-level model with varying-intercepts by
each grouping variable but with a fixed slope for one predictor, we would
have

In R, we can fit the model above as follows:

M1 <- lmer(y ~ x + (1 | GroupVar1) + (1 | GroupVar2)) ; summary(M1)

Adding more predictors is trivial.

It is easy to add more group variables but it can be hard to fit the model
without enough data points.

yijk = (β0 + γ0j + η0k) + β1x1ijk + ϵijk

γ0j ∼ N(0, τ 2
γ(0))

η0k ∼ N(0, τ 2
η(0))

ϵij ∼ N(0, σ2)

i = 1, … , njk;    j = 1, … , J;    k = 1, … , K.
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What's next?
Move on to the readings for the next module!
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