IDS 702: MODULE 2.5

LOGISTIC REGRESSION WITH MULTIPLE PREDICTORS

DR. OLANREWAJU MICHAEL AKANDE

LOGISTIC REGRESSION WITH MULTIPLE PREDICTORS: MOTIVATING EXAMPLE

- In many developing countries, people get their drinking water from wells.
- Sometimes these wells are contaminated with the chemical arsenic, which when consumed in high concentrations causes skin and bladder cancer, as well as cardiovascular disease.
- Fortunately, in many cases people living near contaminated wells have the opportunity to get water from nearby uncontaminated wells.

THE CONTAMINATED WELLS ANALYSIS

- In one study, several researchers measured the concentrations of arsenic in wells in a particular region of Bangladesh.
- They labeled wells as safe or unsafe based on the measurements.
- The researchers encouraged people drinking from unsafe wells to switch to safe wells.
- Several years later, the researchers returned to the area with the goal of seeing who had switched from unsafe to safe wells.
- They recorded information on a sample of 3020 individuals who had wells at their homes that were unsafe.
- Let's address the question: what predicts why people switch wells?
- The data is in the file arsenic.csv on Sakai.

THE CONTAMINATED WELLS ANALYSIS

Data description

Variable	Description				
Switch	1 = if respondent switched to a safe well0 = if still using own unsafe well				
Arsenic	Arsenic amount of arsenic in well at respondent's home (100s of micro- grams per liter)				
Dist	distance in meters to the nearest known safe well				
Assoc	1 = if any members of household are active in community organizations0 = otherwise				
Educ	years of schooling of the head of household				

Treat switch as the response variable and others as potential predictors.

LOGISTIC REGRESSION WITH MULTIPLE PREDICTORS

- We can then formally extend the logistic regression model we had before to allow for multiple predictors.
- We still have

 $\Pr[y_i = 1 | x_i] = \pi_i \; ext{ and } \; \Pr[y_i = 0 | x_i] = 1 - \pi_i,$

or

 $|y_i|x_i \sim \mathrm{Bernoulli}(\pi_i)$

as before, but with

$$\log\left(rac{\pi_i}{1-\pi_i}
ight)=eta_0+eta_1x_{i1}+eta_2x_{i2}+\ldots+eta_px_{ip}$$

now in both cases.

• Let's fit the model to our motivating example.

THE CONTAMINATED WELLS ANALYSIS: EDA

arsenic <- read.csv("data/arsenic.csv",header=T,</pre>

colClasses=c("numeric","numeric","factor","numeric"))

head(arsenic)

##		switch	arsenic	dist	assoc	educ
##	1	1	2.36	16.826	0	0
##	2	1	0.71	47.322	0	0
##	3	Θ	2.07	20.967	0	10
##	4	1	1.15	21.486	0	12
##	5	1	1.10	40.874	1	14
##	6	1	3.90	69.518	1	9

summary(arsenic[,-1])

##	arsenic	dist	assoc	educ
##	Min. :0.510	Min. : 0.387	0:1743	Min. : 0.000
##	1st Qu.:0.820	1st Qu.: 21.117	1:1277	1st Qu.: 0.000
##	Median :1.300	Median : 36.761		Median : 5.000
##	Mean :1.657	Mean : 48.332		Mean : 4.828
##	3rd Qu.:2.200	3rd Qu.: 64.041		3rd Qu.: 8.000
##	Max. :9.650	Max. :339.531		Max. :17.000

table(arsenic\$switch)

##

0 1 ## 1283 1737

Move to the R script here.

WHAT'S NEXT?

Move on to the readings for the next module!

