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Model assessment and validation

There are various types of residuals when working with generalized linear
models (GLMs). For logistic regression in particular, we have

Response residuals

Pearson residuals

which are obtained by "normalizing" the response residuals by the
estimated Bernoulli standard deviation.

Deviance residuals

which are the default in R when using the residuals() function. We will
talk a bit more about deviance later, but deviance residuals represent
the contributions of individual samples to the deviance.

ei = yi − π̂i.

eP
i = ,

yi − π̂i

√π̂i(1 − π̂i)

eD
i = sign(yi − π̂i) × 2(yilog + (1 − yi)log ) ,

1

π̂i

1

1 − π̂i
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Model assessment and validation

Deviance residuals are usually the most appropriate for residual plots,
when working with GLMs.

However, unlike what we had for linear regression, just looking at the
residuals does not work well here.

They are always positive when  and always negative when 
.

Also, constant variance is not an assumption of logistic regression.

Why is that the case?

Think about the properties of the Bernoulli distribution when we
write 

We also do not have normality of residuals to work with either.

Y = 1
Y = 0

yi|xi ∼ Bernoulli(πi)
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Model assessment and validation

What we can do is check to see if the function of predictors is well
specified using binned residuals.

We can assess the overall fit of our model using deviance and change in
deviance.

We can also see how well our model predicts (model validation) using

Confusion matrix

ROC curves
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Binned residuals

Compute raw (response) residuals for fitted logistic regression.

Order observations by values of predicted probabilities (or predictor
values) from the fitted regression.

Using ordered data, form  bins of (approximately) equal size. Default: 
.

Compute average residual in each bin.

Plot average residual versus average predicted probability (or average
predictor value) for each bin.

Use the arm package in R.

g
g = √n
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NBA analysis

Recall the NBA data

nba <- read.csv("data/nba_games_stats_reduced.csv",header=T,
                stringsAsFactors=T)
nba <- nba[nba$Team=="SAS",]
colnames(nba)[3] <- "Opp"
nba$win <- rep(0,nrow(nba))
nba$win[nba$WINorLOSS=="W"] <- 1
nba$win <- as.factor(nba$win)
nba$Opp_cent <- nba$Opp - mean(nba$Opp)
nbareg <- glm(win~Opp_cent,family=binomial(link=logit),data=nba)
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NBA analysis

plot(nbareg,which=1)

The residuals are the deviance residuals, while the predicted values are on
the linear (logit) scale, that is, .

Look to see which cases have large absolute values for cases that don't fit
well, but not too useful otherwise.

β0 + β1xi
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NBA analysis

Plot binned raw residuals versus predicted probabilities (arm package).

Look for "randomness" with almost all points within the red lines.

binnedplot(fitted(nbareg),residuals(nbareg,"resp"),xlab="Pred. probabilities",col.int="red
           ylab="Avg. residuals",main="Binned residual plot",col.pts="navy")
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NBA analysis

Useful as a "one-stop shopping" plot; especially with many predictors and
you want an initial look at model adequacy.

What we have is mostly good, although model seems to struggle for fitted
values over 0.95 or so.

The red lines represent  SE bands, which we would expect to contain
about 95% of the observations.

Too few points here to draw any conclusions!

You usually want many more data points before these plots start being
useful.

±2
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NBA analysis

Plot binned raw residuals versus individual predictors.

binnedplot(nba$Opp,residuals(nbareg,"resp"),xlab="Opponent's points (centered)",
           col.int="red4",ylab="Avg. residuals",main="Binned residual plot",col.pts="navy"
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NBA analysis

Mostly good, although model seems to struggle for low values of
opponent's points.

Also, too many points (16.7%) outside the bands.

However, still too few points here for any conclusive takeaways.

We also know some important predictors are missing by construction...
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Deviance

To assess overall model fit, we can also look at deviance.

Deviance measures how well the model fits the data, when compared to
the saturated model, that is, an abstract model that fits the sample
perfectly.

Precisely, deviance is defined as the difference of likelihoods between
the fitted model and the saturated model:

However, this "abstract saturated model" will have likelihood equal to
one, so that deviance is simply

Note that deviance is always larger or equal than zero, and will only be
zero if the fit is "perfect".

Overall, deviance is a measure of error, so that, lower values of deviance
means better fit to the data.

D = −2 [ Log Likelihood(Fitted Model) −  Log Likelihood(Saturated Model)] .

D = −2 Log Likelihood(Fitted Model) = −2
n

∑
i=1

[yilog(π̂1i) + (1 − yi)log(1 − π̂1i)] .
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Deviance

Like the metrics used under MLR, it is also often useful to use deviance
for a model in relation to another model. We will revisit this soon.

For now, a model we can use for this comparison is the null model, that
is, the model with only the intercept.

Intuitively, this gives us a sense of how much the model improves from
the "worst model", by the addition of the predictors.

The deviance of the null model, denoted , is thus referred to as the
null deviance.

To get a general sense of how much better the fitted model is to the null
model, compare  to , usually through the difference .

The "larger" this change in deviance  is, the more confident we
are that the predictors we have included improve model fit.

In large samples,  has approximately a chi-squared distribution
with degrees of freedom equal to the difference in the number of
predictors between the two models.

D0

D D0 D0 − D

D0 − D

D0 − D
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NBA analysis

For the NBA data for example, we see what looks like a meaningful difference
in the two deviance scores.

summary(nbareg)

## 
## Call:
## glm(formula = win ~ Opp_cent, family = binomial(link = logit), 
##     data = nba)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2760  -0.7073   0.4454   0.7902   1.9593  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  1.13387    0.15145   7.487 7.06e-14
## Opp_cent    -0.12567    0.01655  -7.594 3.11e-14
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 400.05  on 327  degrees of freedom
## Residual deviance: 313.42  on 326  degrees of freedom
## AIC: 317.42
## 
## Number of Fisher Scoring iterations: 5
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NBA analysis

We can formalize this by doing a chi-squared test on the null model vs
our fitted model. That is,

nbareg_null <- glm(win~1,family=binomial(link=logit),data=nba)
anova(nbareg_null,nbareg,test= "Chisq")

## Analysis of Deviance Table
## 
## Model 1: win ~ 1
## Model 2: win ~ Opp_cent
##   Resid. Df Resid. Dev Df Deviance  Pr(>Chi)
## 1       327     400.05                      
## 2       326     313.42  1    86.63 < 2.2e-16

The low p-value then confirms our previous statement.

We will revisit this again when we look at logistic regression with
multiple predictors.

We will be able to use deviance for model comparison and selection by
looking at the change in deviance , for two models  and 

, where  is nested within .
DM1

− DM2
M1

M2 M1 M2
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Confusion matrix

We can use the estimated probabilities from our fitted model to predict
outcomes, and then compare those to the observed values.

For example, we could decide to predict  when the predicted
probability exceeds  and predict  otherwise.

We then can determine how many cases we classify correctly and
incorrectly.

Resulting  table is called the confusion matrix.

When mis-classification rates are high, model may not be an especially
good fit to the data.

Y = 1
0.5 Y = 0

2 × 2
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Confusion matrix

Observed

Y=1 Y=0

Predicted
Y=1 TP (True Positives) FP (False Positives)

Y=0 FN (False Negatives) TN (True Negatives)

True positive rate (TPR) =  (also known as sensitivity)

False negative rate (FNR) = 

True negative rate (TNR) =  (also known as specificity)

False positive rate (FPR) =  (1 - specificity)

TP

TP + FN

FN

TP + FN

TN

FP + TN

FP

FP + TN
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ROC Curves

We want high values of sensitivity and low values of (1 - specificity)!

The receiver operating characteristic (ROC) curve plots

Sensitivity on Y axis

1 - specificity on X axis

Evaluated at lots of different values (beyond 0.5) for the threshold.

Good fitting logistic regression curves toward the upper left corner, with
area under the curve (AUC) near one.

Make ROC curves in R using the pROC package.

By the way, we also often define accuracy as .

This estimates how well the model predicts correctly overall.

TP + TN

TP + FN + FP + TN
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NBA analysis

Let's look at the confusion matrix for the NBA data. Load the arm, e1071,
caret, and pROC packages.

Conf_mat <- confusionMatrix(as.factor(ifelse(fitted(nbareg) >= 0.5, "W","L")),
                            nba$WINorLOSS,positive = "W")
Conf_mat$table

##           Reference
## Prediction   L   W
##          L  44  19
##          W  54 211

Conf_mat$overall["Accuracy"];

## Accuracy 
## 0.777439

Conf_mat$byClass[c("Sensitivity","Specificity")]

## Sensitivity Specificity 
##   0.9173913   0.4489796

confusionMatrix produces a lot of output. Print the Conf_mat object to see all
of them.
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NBA analysis

invisible(roc(nba$win,fitted(nbareg),plot=T,print.thres=c(0.3,0.5,0.7),legacy.axes=T,
              print.auc =T,col="red3"))
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NBA analysis

invisible(roc(nba$win,fitted(nbareg),plot=T,print.thres="best",legacy.axes=T,
              print.auc =T,col="red3"))
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What's next?
Move on to the readings for the next module!
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