IDS 702: Module 2.1

ODDS, ODDS RATIOS, AND RELATIVE RISKS

DR. OLANREWAJU MICHAEL AKANDE

INTRODUCTION

- So far, our response variables have been continuous.
- Sometimes, we would also like to build models for binary outcome variables. For example,
 - Y=1: healthy, Y=0: not healthy
 - Y=1: employed, Y=0: not employed
 - Y = 1: win, Y = 0: lose
- Often, we want to predict or explain the binary outcome variable from several predictors.
- Linear regression is NOT appropriate, because normality for the response variable (and errors) makes no sense in this case.
- This brings us to logistic regression, the most popular model for binary outcomes.
- First let's review relative risk, odds and odds ratios.

ABSOLUTE RISK AND RELATIVE RISK

• Y: binary response variable, X: binary predictor

$$egin{array}{c|cccc} Y=1 & Y=0 \ X=1 & \mathsf{a} & \mathsf{b} \ X=0 & \mathsf{c} & \mathsf{d} \ \end{array}$$

■ Absolute risk of
$$Y=1$$
 for level $X=1$: $\frac{a}{(a+b)}$

■ Absolute risk of
$$Y=1$$
 for level $X=0$: $\frac{c}{(c+d)}$

Relative risk (RR):
$$\frac{a/(a+b)}{c/(c+d)}$$

Relative risk is a ratio of two probabilities.

Give an example of an application where you think relative risk might be useful.

ODDS AND ODDS RATIO

• Y: binary response variable, X: binary predictor

$$egin{array}{c|cccc} Y=1 & Y=0 \ X=1 & \mathsf{a} & \mathsf{b} \ X=0 & \mathsf{c} & \mathsf{d} \ \end{array}$$

- Odds of Y=1 for level X=1: $\frac{a}{b}$
- Odds of Y=1 for level X=0: $\frac{c}{d}$
- Odds ratio (OR): $\frac{a/b}{c/d}$
- Odds ratio is a ratio of two odds.

Give an example of an application where you think odds or odds ratio might be useful.

PROBABILITIES AND ODDS: MOTIVATING EXAMPLE

- Physicians' Health Study (1989): randomized experiment with 22071 male physicians at least 40 years old.
- Half the subjects were assigned to take aspirin every other day.
- The other half were assigned to take a placebo pill.
- Broad goal: determine whether aspirin decreases cardiovascular mortality.
- Here are the number of people in each cell of the contingency table:

	Heart attack	No heart attack
Aspirin	104	10933
Placebo	189	10845

ABSOLUTE RISK AND RELATIVE RISK FOR PHYSICIANS HEALTH STUDY

Physicians Health Study

	Heart attack	No heart attack
Aspirin	104	10933
Placebo	189	10845

 Relative risk of a heart attack when taking aspirin versus when taking a placebo equals

$$RR = \frac{104/(104 + 10933)}{189/(189 + 10845)} = 0.55$$

 Odds of having a heart attack when taking aspirin over odds of a heart attach when talking a placebo (odds ratio)

$$OR = \frac{104/10933}{189/10845} = 0.546$$

INTERPRETING ODDS RATIOS AND RELATIVE RISKS

$$egin{array}{c|cccc} Y=1 & Y=0 \ X=1 & \mathsf{a} & \mathsf{b} \ X=0 & \mathsf{c} & \mathsf{d} \ \end{array}$$

When the variables X and Y are independent

$$OR = 1;$$
 $RR = 1$

 $\ \ \, \ \ \,$ When subjects with level X=1 are more likely to have Y=1 than subjects with level X=0, then

$$OR > 1;$$
 $RR > 1$

lacksquare When subjects with level X=1 are less likely to have Y=1 than subjects with level X=0, then

$$OR < 1;$$
 $RR < 1$

RELATIVE RISK VS. ABSOLUTE RISK: SMOKING AND LUNG CANCER

- Small or large values of relative risk may or may not be significant depending on the base rate.
- Thus, it can be more helpful or meaningful to present both the absolute risk and RR.
- For example,
 - Percentage of smokers who get lung cancer: 8% (conservative estimate)
 - Relative risk of lung cancer for smokers: 800%
 - That is, getting lung cancer is not commonplace, even for smokers but, smokers'chances of getting lung cancer are much, much higher than non-smokers' chances.
 - The absolute risk helps place the RR in context.

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

